Fisher's exact test

Observed data

	N	Y
A	18	2
B		
	11	9
	20	
	29	11

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- What's the chance of getting this exact table?
- What's the chance of getting a table at least as "extreme"?

Hypergeometric distribution

- Imagine an urn with K white balls and $\mathrm{N}-\mathrm{K}$ black balls.
- Draw n balls without replacement.
- Let x be the number of white balls in the sample.
- x follows a hypergeometric distribution (w/ parameters K, N, n).

sampled not sampled	In urn white black	
	X	$\begin{gathered} \mathrm{n} \\ \mathrm{~N}-\mathrm{n} \end{gathered}$
	K $\mathrm{N}-\mathrm{K}$	N

Hypergeometric probabilities

Suppose X ~ Hypergeometric (N, K, n).

No. of white balls in a sample of size n , drawn without replacement from an urn with K white and $\mathrm{N}-\mathrm{K}$ black.

$$
\operatorname{Pr}(\mathrm{X}=\mathrm{x})=\frac{\binom{\mathrm{K}}{\mathrm{x}}\binom{\mathrm{~N}-\mathrm{K}}{\mathrm{n}-\mathrm{x}}}{\binom{\mathrm{~N}}{\mathrm{n}}}
$$

Example:
In urn

The hypergeometric in \mathbf{R}

dhyper (x, m, n, k)
phyper (q, m, n, k)
qhyper ($\mathrm{p}, \mathrm{m}, \mathrm{n}, \mathrm{k}$)
rhyper (nn, m, n, k)

In R, things are set up so that
$\mathrm{m}=$ no. white balls in urn
$\mathrm{n}=$ no. black balls in urn
$\mathrm{k}=$ no. balls sampled (without replacement)
$x=$ no. white balls in sample
$\mathrm{nn}=\mathrm{no}$. of observations

Back to Fisher's exact test

Observed data

	N	Y
A	18	2
	20	
B	11	9
	29	20
	29	11

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- $\operatorname{Pr}\left(\right.$ observed table $\left.\mid \mathrm{H}_{0}\right)=\operatorname{Pr}(\mathrm{X}=18)$
$X \sim$ Hypergeometric ($N=40, K=29, n=20$)

Fisher's exact test

1. For all possible tables (with the observed marginal counts), calculate the relevant hypergeometric probability.
2. Use that probability as a statistic.
3. P-value (for Fisher's exact test of independence):
\longrightarrow The sum of the probabilities for all tables having a probability equal to or smaller than that observed.

An illustration

The observed data

	N	Y	
A	18	2	20
B	11	9	20
	29	11	40

All possible tables (with these marginals):

$$
\begin{aligned}
& \left.\begin{array}{cc}
20 & 0 \\
9 & 11
\end{array} \right\rvert\, \rightarrow 0.00007 \\
& \left.\begin{array}{ll}
14 & 6 \\
15 & 5
\end{array}\right] \rightarrow 0.25994 \\
& \left.\begin{array}{ll}
\hline 13 & 7 \\
16 & 4
\end{array}\right] \rightarrow 0.16246 \\
& \begin{array}{ll}
12 & 8 \\
17 & 3
\end{array} \rightarrow 0.06212 \\
& \left.\begin{array}{ll}
\hline 11 & 9 \\
18 & 2
\end{array}\right] \rightarrow 0.01380 \\
& \left.\begin{array}{cc}
10 & 10 \\
19 & 1
\end{array}\right] \rightarrow 0.00160 \\
& \begin{array}{cc}
\begin{array}{cc}
9 & 11 \\
20 & 0
\end{array} \rightarrow 0.00007
\end{array}
\end{aligned}
$$

Fisher's exact test: example 1

Observed data

P -value $\approx 3.1 \%$ In R: fisher.test()

Recall:
$\longrightarrow \quad \chi^{2}$ test: P-value $=1.3 \%$
\longrightarrow LRT: P-value $=1.1 \%$

Fisher's exact test: example 2

Observed data

			I-B
	NI-B		
I-A	9	9	
NI-A	18		
	20	62	82
	29	71	100

$$
P \text {-value } \approx 4.4 \%
$$

Recall:
$\longrightarrow \chi^{2}$ test: \quad P-value $=3.0 \%$
\longrightarrow LRT: P-value $=3.7 \%$

Fisher's exact test

Observed data

- Assume H_{0} is true.
- Condition on the marginal counts
- Then $\operatorname{Pr}($ table $) \propto 1 / \prod_{\mathrm{ij}} \mathrm{n}_{\mathrm{ij}}!$
- Consider all possible tables with the observed marginal counts
- Calculate Pr(table) for each possible table.
- P -value $=$ the sum of the probabilities for all tables having a probability equal to or smaller than that observed.

Fisher's exact test: the example

\longrightarrow Since the number of possible tables can be very large, we often must resort to computer simulation.

