We have a population of items with multiple measurable attributes.
Every two attribute have a correlation we call rho and a linear relation Y=beta0 and beta1*x
We may test the Hypothesis: rho=0
based on sample r
t^*=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}
=================================
We may test the Hypothesis: beta1=0 for one Iv
t=\frac{beta1}{S_{beta1}}=\frac{beta1}{\frac{\sqrt{\frac{SSE}{n-k-1}}}{{S_{x}\sqrt{n-1}}}}\sim T_{n-K-1}\sim \forall
\textup{ k number of vars}
=================================
We may test the Hypothesis: beta1=0 for two Iv
\sqrt{\frac{SSE}{n-k-1}}
\frac{\sqrt{\frac{SSE}{n-k-1}}}{{S_{x}\sqrt{(1-{r_{x_{1}x_{2}}^{2})n-1}}}}
t=\frac{beta1}{S_{beta1}}=\frac{beta1}{\frac{\sqrt{\frac{SSE}{n-k-1}}}{{S_{x}\sqrt{(1-{r_{x_{1}x_{2}}^{2})n-1}}}}}\sim T_{n-K-1}\sim \forall
\textup{ k number of vars}
==========================================
We may test the Hypothesis: beta1=beta2=beta3=0
which means that the whole model is useless.
F=\frac{\frac{SSR}{number of Iv}}{\frac{S_{SSE}}{n-number of Iv-1}}=\frac{MSR}{MSE}\sim F_{k,n-k-1}