# Truth tables for realistic intelligence

Many times we don’t exactly know whether a statement is true or false.

A proposition can be true, very unlikely to be true ,……, very unlikely to be true, or not true.

T=100

VL=90{80-100}

L=70{60-80}

N=50{40-60}

U=30{20-40}

VU=10{00-20}

F=0

D=Don’t know=I have absolutely NO idea

$\tiny&space;\dpi{300}&space;\tau&space;(A)=\left&space;(D,&space;F,VU,U,&space;N,L,VL,&space;T&space;\right&space;)$

$\dpi{300}&space;\tau(A&space;\vee&space;B)=&space;\geqslant&space;max&space;\{&space;\tau&space;(A)&space;,\tau&space;(B)\}$

For an independent B

 V B A D F U N L T D D F U N L T F F F U N L T U U U N+ L- L+ T N N N L- L+ VL- T L L L L+ VL- VL+ T T T T T T T T

———————————————————————————————-

$\dpi{300}&space;\tau(A&space;\wedge&space;B)=&space;\leq&space;min&space;\{&space;\tau&space;(A)&space;,\tau&space;(&space;B)\}$

For a dependent B

 AandB B|A A D F U N L T D D F D D D D F F F F F F F U D F VU- VU+ U- U N D F VU+ U- U+ N L D F U- U+ N- L T D F U N L T

————————————————————————————

$\dpi{300}&space;\tau(\sim&space;A)=Reflection(A)$