Truth tables for realistic intelligence

Many times we don’t exactly know whether a statement is true or false.

A proposition can be true, very unlikely to be true ,……, very unlikely to be true, or not true.

T=100

VL=90{80-100}

L=70{60-80}

N=50{40-60}

U=30{20-40}

VU=10{00-20}

F=0

D=Don’t know=I have absolutely NO idea

 

\tiny \dpi{300} \tau (A)=\left (D, F,VU,U, N,L,VL, T \right )

\dpi{300} \tau(A \vee B)= \geqslant max \{ \tau (A) ,\tau (B)\}

For an independent B

 

V B
A D F U N L T
D D F U N L T
F F F U N L T
U U U N+ L- L+ T
N N N L- L+ VL- T
L L L L+ VL- VL+ T
T T T T T T T

———————————————————————————————-

\dpi{300} \tau(A \wedge B)= \leq min \{ \tau (A) ,\tau ( B)\}

For a dependent B

AandB B|A
A D F U N L T
D D F D D D D
F F F F F F F
U D F VU- VU+ U- U
N D F VU+ U- U+ N
L D F U- U+ N- L
T D F U N L T

————————————————————————————

\dpi{300} \tau(\sim A)=Reflection(A)

 

Amir H. Ghaseminejad

29 May 2013

http://plato.stanford.edu/entries/logic-probability/

http://en.wikipedia.org/wiki/Probabilistic_logic

http://en.wikipedia.org/wiki/Multi-valued_logic#Relation_to_fuzzy_logic

http://en.wikipedia.org/wiki/Three-valued_logic

Comments are closed.